Inicio  /  Hydrology  /  Vol: 3 Par: 4 (2016)  /  Artículo
ARTÍCULO
TITULO

Seasonal Changes in the Inundation Area and Water Volume of the Tonle Sap River and Its Floodplain

Sokly Siev    
Enrico C. Paringit    
Chihiro Yoshimura and Seingheng Hul    

Resumen

Flood pulses occur annually along the Tonle Sap River (TSR) due to the large volume of water flowing from Tonle Sap Lake (TSL), its tributaries, and the Mekong River (MR). This study describes the seasonal changes in inundation area and water volume in the floodplain along the TSR over three years. The method employed time series remote sensing images of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, the digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM), bathymetric data, and observed water level data. Adding normalized difference vegetation index (NDVI) as a ?third band? in the maximum likelihood classification (MLC) provided higher accuracy compared to thresholding NDVI and pure MLC (two bands) only. The results showed that the inundation area ranged from 123.8 to 3251.2 km2 (mean: 1028.5 km2) with overall accuracy of 96.9%. The estimated water volume ranged from 418.3 to 2223.9 million m3 (mean: 917.3 million m3) from the dry to wet season, respectively. Seasonally, the TSR floodplain accounted for up to 5.3% and 3.2% of the mean annual inflow and outflow of the TSR, respectively. In addition to the TSL water reservoir, the TSR and its floodplain exchanged and stabilized the flow of the MR and its downstream delta, respectively. Overall, the obtained results have enhanced our understanding of the TSR, supporting further studies on river connectivity and reversal flow in this study area.

Palabras claves

 Artículos similares

       
 
Katerina Vatitsi, Sofia Siachalou, Dionissis Latinopoulos, Ifigenia Kagalou, Christos S. Akratos and Giorgos Mallinis    
Freshwater ecosystems provide an array of provisioning, regulating/maintenance, and cultural ecosystem services. Despite their crucial role, freshwater ecosystems are exceptionally vulnerable due to changes driven by both natural and human factors. Water... ver más
Revista: Water

 
Haijiao Yang, Jiahua Wei and Kaifang Shi    
In the context of climate change, precipitation and runoff in the arid inland basins of northwest China have undergone significant changes. The Qaidam Basin (QB) is a typical highland arid inland area. Understanding the spatial and temporal variations in... ver más
Revista: Water

 
Rui Yuan, Ruiyang Xu, Hezhenjia Zhang, Yutao Hua, Hongsheng Zhang, Xiaojing Zhong and Shenliang Chen    
This study presents an in-depth analysis of the dynamic beach landscapes of Hainan Island, which is located at the southernmost tip of China. Home to over a hundred natural and predominantly sandy beaches, Hainan Island confronts significant challenges p... ver más
Revista: Water

 
Yunrui Yang, Erfu Dai, Jun Yin, Lizhi Jia, Peng Zhang and Jianguo Sun    
Based on the data of 2254 daily meteorological stations in China from 1961 to 2021, this study calculated the standardized precipitation evapotranspiration index (SPEI) of the national multi-time scale by using the FAO Penman?Monteith model to quantify t... ver más
Revista: Water

 
Jinming Chen, Xiao Yang, Haiya Dao, Haowen Gu, Gang Chen, Changshu Mao, Shihan Bai, Shixiang Gu, Zuhao Zhou and Ziqi Yan    
Water, soil, and heat are strategic supporting elements for human survival and social development. The degree of matching between human-land-water-heat elements directly influences the sustainable development of a region. However, the current evaluation ... ver más
Revista: Water