ARTÍCULO
TITULO

A Numerical Study of Long-Return Period Near-Bottom Ocean Currents in Lower Cook Inlet, Alaska

David B. Fissel and Yuehua Lin    

Resumen

Lower Cook Inlet (LCI) is an important waterway with very large tides and high marine productivity. Oceanographic forcing in LCI is complex due to a combination of tides, seasonal winds, and large freshwater discharges, as well as inflow from the Alaska Coastal Current. From an analysis of historical current meter data sets, deeper ocean currents of LCI were found to have large differences resulting from the dominance of large tides in the northeast portion of LCI while subtidal contributions to the deeper currents are more important relative to the reduced tidal currents in central and western parts of LCI. To compute the largest values of the near-bottom currents of LCI, a 3D hydrodynamical model was developed over a large model domain extending over the full 300 km length of Cook Inlet as well as a large portion of the adjoining Alaska continental shelf region. At the open model boundaries, nine major tidal height constituents were specified based on National Oceanic and Atmospheric Administration (NOAA) tidal gauge data. The model was forced by the spatially varying winds and freshwater discharges for the six gauged rivers in Cook Inlet. The model was verified using available current meter data in the study area. Model runs were carried out for 21 case studies to derive the near-bottom currents for return periods of 1, 10, and 100 years. Within LCI, the extremal values for near bottom currents arise from quite different forcing regimes. Tidal currents are completely dominant in the northeast portion of LCI while for central and western portions, remote wind forcing over the Alaskan continental shelf current, which generates the Alaska Coastal Current, becomes more important.

 Artículos similares

       
 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences

 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences