Resumen
Due to urbanization around the world, people living in urban areas have been suffering from a series of negative effects caused by changes in urban microclimate, especially when it comes to urban heat islands (UHIs). To mitigate UHIs, management of urban wind environments is increasingly considered as a crucial part of the process. Computational fluid dynamics (CFD) simulation of wind fields has become a prevailing method to explore the relationship between morphological factors and wind environment. However, most studies are focused on building scale and fail to reflect the effects of comprehensive planning. In addition, the combined influence of different morphological factors on wind environment is rarely discussed. Therefore, this study tries to explore the relationship between urban morphology and wind environment in a new-town area. CFD method was applied to simulate the wind field, and 11 scenarios based on criteria according to existing literature, planning regulations and local characteristics were developed. The simulation results from different scenarios show that the impact of the five selected factors on wind speeds was non-linear, and the impact varied significantly among different areas of the study region. Simulation of the differences in regional wind speeds among different planning scenarios can provide strong decision-making support.