Resumen
Urban streams are ecosystems of great ecological and hydrological importance for human environments. However, they face pressure on biodiversity, hydromorphology, and water quality. In this study, an urban riparian system of a Mediterranean city (Thessaloniki, Greece) which interacts with several land-use classes, namely forests, pastures, cultivations, industrial-commercial infrastructure, and light and dense urban fabric, is assessed. The analyzed data were collected by implementing mainly QBR and ancillary RMP protocols on 37 plots of the Dendropotamos stream. The QBR protocol provided an assessment of total riparian vegetation cover, cover structure and quality, as well as channel alterations. The RMP protocol was used to enhance the quantitative assessment of dominant tree and shrub cover. Parts of Dendropotamos surrounded by agricultural (median QBR score: 27.5), industrial (50), and dense residential areas (27.5) suffer, in general, from low riparian vegetation cover, bad vegetation structure and quality, the continuous presence of alien/introduced species, and channel alterations. A variety of riparian habitat conditions characterize the sparse residential areas (60) where cover structure and quality of vegetation is improved. The reduction in grazing pressure has improved the riparian habitat in the greatest part of Dendropotamos that is surrounded by semi-natural pastures (65). Within forested areas (85), the stream conditions are considered quasi-natural. All previous land uses are differentiated in terms of the dominant trees found in the vegetation of Dendropotamos: Platanus orientalis in forested areas, alien Ailanthus altissima mainly in residential and industrial areas, and native shrubs, e.g., Quercus coccifera and Pyrus spinosa, in pastures. The QBR protocol could be a valuable tool in urban environment planning to help identify areas with potential for restoration, such as those with moderate residential pressure.