Resumen
This study aims to clarify the influence of photographic environments under different light sources on image-based SPAD value prediction. The input variables for the SPAD value prediction using Random Forests, XGBoost, and LightGBM were RGB values, HSL values, HSV values, light color temperature (LCT), and illuminance (ILL). Model performance was assessed using Pearson?s correlation coefficient (COR), Nash?Sutcliffe efficiency (NSE), and root mean squared error (RMSE). Especially, SPAD value prediction with Random Forests resulted in high accuracy in a stable light environment; CORRGB+ILL+LCT and CORHSL+ILL+LCT were 0.929 and 0.922, respectively. Image-based SPAD value prediction was effective under halogen light with a similar color temperature at dusk; CORRGB+ILL and CORHSL+ILL were 0.895 and 0.876, respectively. The HSL value under LED could be used to predict the SPAD value with high accuracy in all performance measures. The results supported the applicability of SPAD value prediction using Random Forests under a wide range of lighting conditions, such as dusk, by training a model based on data collected under different illuminance conditions in various light sources. Further studies are required to examine this method under outdoor conditions in spatiotemporally dynamic light environments.