Resumen
The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump.