Inicio  /  Algorithms  /  Vol: 16 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Folding Every Point on a Polygon Boundary to a Point

Nattawut Phetmak and Jittat Fakcharoenphol    

Resumen

We consider a problem in computational origami. Given a piece of paper as a convex polygon P and a point f located within, we fold every point on a boundary of P to f and compute a region that is safe from folding, i.e., the region with no creases. This problem is an extended version of a problem by Akitaya, Ballinger, Demaine, Hull, and Schmidt that only folds corners of the polygon. To find the region, we prove structural properties of intersections of parabola-bounded regions and use them to devise a linear-time algorithm. We also prove a structural result regarding the complexity of the safe region as a variable of the location of point f, i.e., the number of arcs of the safe region can be determined using the straight skeleton of the polygon P.

 Artículos similares