Inicio  /  Hydrology  /  Vol: 2 Par: 4 (2015)  /  Artículo
ARTÍCULO
TITULO

Performance and Uncertainty Evaluation of Snow Models on Snowmelt Flow Simulations over a Nordic Catchment (Mistassibi, Canada)

Magali Troin    
Richard Arsenault and François Brissette    

Resumen

An analysis of hydrological response to a multi-model approach based on an ensemble of seven snow models (SM; degree-day and mixed degree-day/energy balance models) coupled with three hydrological models (HM) is presented for a snowmelt-dominated basin in Canada. The present study aims to compare the performance and the reliability of different types of SM-HM combinations at simulating snowmelt flows over the 1961?2000 historical period. The multi-model approach also allows evaluating the uncertainties associated with the structure of the SM-HM ensemble to better predict river flows in Nordic environments. The 20-year calibration shows a satisfactory performance of the ensemble of 21 SM-HM combinations at simulating daily discharges and snow water equivalents (SWEs), with low streamflow volume biases. The validation of the ensemble of 21 SM-HM combinations is conducted over a 20-year period. Performances are similar to the calibration in simulating the daily discharges and SWEs, again with low model biases for streamflow. The spring-snowmelt-generated peak flow is captured only in timing by the ensemble of 21 SM-HM combinations. The results of specific hydrologic indicators show that the uncertainty related to the choice of the given HM in the SM-HM combinations cannot be neglected in a more quantitative manner in simulating snowmelt flows. The selection of the SM plays a larger role than the choice of the SM approach (degree-day versus mixed degree-day/energy balance) in simulating spring flows. Overall, the snow models provide a low degree of uncertainty to the total uncertainty in hydrological modeling for snow hydrology studies.