Resumen
Phosphorus (P) impairment of surface waters still represents a major concern worldwide, despite decades of awareness and implementation of remedial measures. In view of this situation, it is all the more necessary to provide decision makers with reliable modelling tools, which can correctly estimate the effect of alternative management strategies. This work tests the performance of the semi-empirical model MONERIS (Modelling of Nutrient Emissions in River Systems) in depicting and quantifying trends of instream total phosphorus (TP) concentration in three catchments located in Upper Austria, a region affected by high agricultural nutrients emissions. The model correctly depicts both the existence of increasing trends (4?µ
g
g
TP
L
-
1
L
-
1
year
-
1
year
-
1
) and the lack thereof (<0.1 µ
g
g
TP
L
-
1
year
-
1
L
-
1
year
-
1
) in different sub-catchments within the period 2001?2014, although it systematically underestimates the trends magnitude. Furthermore, MONERIS together with an optimized data management system has allowed identifying the probable cause of such trends. The results suggest that, despite considerable improvements achieved through enhanced P removal from wastewater and through the implementation of an agri-environmental programme, changes in land use and in cultivated crop types have led to an offsetting increase of erosion-driven emissions. This methodology offers high potential to predict the effect of different management scenarios, but further model fine-tuning concerning erosion and retention processes is required to improve the model accuracy.