ARTÍCULO
TITULO

Spatiotemporal Distribution and Influencing Factors of Theft during the Pre-COVID-19 and COVID-19 Periods: A Case Study of Haining City, Zhejiang, China

Xiaomin Jiang    
Ziwan Zheng    
Ye Zheng and Zhewei Mao    

Resumen

Theft is an inevitable problem in the context of urbanization and poses a challenge to people?s lives and social stability. The study of theft and criminal behavior using spatiotemporal, big, demographic, and neighborhood data is important for guiding security prevention and control. In this study, we analyzed the theft frequency and location characteristics of the study area through mathematical statistics and hot spot analysis methods to discover the spatiotemporal divergence characteristics of theft in the study area during the pre-COVID-19 and COVID-19 periods. We detected the spatial variation pattern of the regression coefficients of the local areas of thefts in Haining City by modeling the influencing factors using the geographically weighted regression (GWR) analysis method. The results explained the relationship between theft and the influencing factors and showed that the regression coefficients had both positive and negative values in the pre-COVID-19 and COVID-19 periods, indicating that the spatial distribution of theft in urban areas of Haining City was not smooth. Factors related to life and work indicated densely populated areas had increased theft, and theft was negatively correlated with factors related to COVID-19. The other influencing factors were different in terms of their spatial distributions. Therefore, in terms of police prevention and control, video surveillance and police patrols need to be deployed in a focused manner to increase their inhibiting effect on theft according to the different effects of influencing factors during the pre-COVID-19 and COVID-19 periods.

 Artículos similares

       
 
Rongliang Cheng, Xiaofeng Han and Zhiqiang Wu    
It is of great significance to identify the spatiotemporal stress distribution characteristics to ensure the safety of a super-high arch dam during the initial operation stage. Taking the 285.5 m-high Xiluodu Dam as an example, the spatiotemporal distrib... ver más
Revista: Water

 
Yufeng Wang, Xue Chen and Feng Xue    
Spatial epidemiology investigates the patterns and determinants of health outcomes over both space and time. Within this field, Bayesian spatiotemporal models have gained popularity due to their capacity to incorporate spatial and temporal dependencies, ... ver más

 
Daxue Kan, Wenqing Yao, Lianju Lyu and Weichiao Huang    
This study aims to improve the level of water ecological civilization (WEC) in the urbanization process based on the data of prefecture-level cities in Jiangxi, China, from 2011 to 2020. This paper applies spatial analysis methods such as the natural fra... ver más
Revista: Water

 
Ahmed Yosri, Maysara Ghaith, Mohamed Ismaiel Ahmed and Wael El-Dakhakhni    
The efficient management and remediation of contaminated fractured aquifers necessitate an accurate prediction of the spatial distribution of contaminant concentration within the system. Related existing analytical solutions are only applicable to single... ver más
Revista: Water

 
Xiuxia Ma, Wenfa Peng, Bingwei Tong, Taiyun Li, Le Wang, Bin Du and Chaochao Li    
To comprehensively comprehend the spatiotemporal variations in pollution load within the Sixth Drainage Ditch of the Ningxia Yellow River Diversion Irrigation Area, we employed the LOADEST model. We utilized daily flow data and concentrations of ammonia ... ver más
Revista: Water