ARTÍCULO
TITULO

Evolution Process of Liquefied Natural Gas from Stratification to Rollover in Tanks of Coastal Engineering with the Influence of Baffle Structure

Zhe Wang    
Fenghui Han    
Yuxiang Liu and Wenhua Li    

Resumen

During the storage process, liquefied natural gas (LNG) may undergo severe evaporation, stratification, and rollover in large storage tanks due to heat leakage, aging, or charging, causing major safety risks. Therefore, this article theoretically analyzes the causes and inducing factors of the LNG stratification and rollover phenomenon in the storage tank of coastal engineering. The computational fluid dynamics was used to establish a numerical model for the heat and mass transfer of LNG multicomponent materials in the imaginary layered interface of the storage tank, and the evolution process of LNG from spontaneous stratification to rollover was simulated. The accuracy of the mathematical model is verified by comparing numerical results with experimental data from open literature. The effects of the density difference between upper and lower layers, layering parameters, heat leakage parameters, and the baffles structure on the rollover process were studied. The effects of the interfacial surface variations are not included in this study. The results show that different baffle structures will form different boundary velocity fields, which will only affect the severity of the rollover, not the occurrence time. The larger the layering density difference, the earlier the rollover occurs. Under current conditions, the baffle structure that has the best suppression of rollover and the minimum boundary velocity is at 0.5 m above the stratified interface with the installation of the baffle at 5 degrees.

 Artículos similares

       
 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace

 
Gang Yao, Guifeng Wang, Lihai Tan, Yinfeng Zhang, Ruizhi Wang and Xiaohan Yang    
To study the influence of inclusions on the fracture evolution and mechanical properties of mortar structures, a series of uniaxial compression tests for mortar samples containing cylinder inclusions of varying mechanical properties were conducted. The d... ver más
Revista: Applied Sciences

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Chatrpol Pakasiri, Ke-Chung Hsu and Sen Wang    
In this paper, a wideband VCO that covers popular Long-Term Evolution (LTE) 0.7 GHz and LTE 2.6 GHz frequencies is designed and developed in a standard 0.18 µm CMOS process. The VCO utilizes active inductors to achieve coarse-tuning of the inductance and... ver más