Inicio  /  Applied Sciences  /  Vol: 12 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique

Hadia Kadhim Judran    
Adnan G. Tuaamah Al-Hasnawi    
Faten N. Al Zubaidi    
Wisam Abed Kattea Al-Maliki    
Falah Alobaid and Bernd Epple    

Resumen

In this paper, the main goal is to study the impact of nanopowder volume concentration and ultrasonication treatment time on the stability and thermophysical properties of MgO-DW nanofluid at room temperature. The co-precipitation method was utilized to prepare pure MgO nanoparticles with an average particle size of 33 nm. The prepared MgO nanopowder was characterized by using XRD, SEM, and EDX analyses. Then, MgO-DW nanofluid was obtained with different volume concentrations (i.e., 0.05, 0.1, 0.15, 0.2, and 0.25 vol.%) and different ultrasonication time periods (i.e., 45, 90, 135, and 180 min) by using a novel two-step technique. With volume concentration and ultrasonication time of 0.15 vol.% and 180 min, respectively, good stability was achieved, according to the zeta potential analysis. With increasing volume concentration and ultrasonication time period of the nanofluid samples, the thermal conductivity measurements showed significant increases. As a result, the maximum enhancement was found to be 25.08% at a concentration ratio of 0.25 vol.% and agitation time of 180 min. Dynamic viscosity measurements revealed two contrasting trends with volume concentration and ultrasonication time. The lowest value of relative viscosity was gained by 0.05 vol.% MgO-DW nanofluid. The chemical and physical interactions between MgO nanoparticles and DW molecules play an important function in determining the thermal conductivity and dynamic viscosity of MgO-DW nanofluid. These findings exhibit that MgO-DW nanofluid has the potential to be used as an advanced heat transfer fluid in cooling systems and heat exchangers.

 Artículos similares

       
 
Xiang Shen, Xu Deng, Barrie Mecrow, Rafal Wrobel and Richard Whalley    
The work specifically targets the enhancement of cooling mechanisms in high-power permanent magnet electrical machines, with a direct application in improving the thermal management of stator windings in such devices. This advancement can significantly b... ver más
Revista: Applied Sciences

 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Laura Moretti, Leonardo Palozza and Antonio D?Andrea    
No theoretical model effectively explains the blistering process, which provokes functional distress in asphalt pavements worldwide. This study focuses on the possible causes of blistering, the physical processes that drive blistering, the role of asphal... ver más
Revista: Applied Sciences

 
Yue Sun, Xiaohong Shi, Shengnan Zhao, Guohua Li, Biao Sun and Jussi Huotari    
It is imperative to elucidate the process of evaporation in lakes, particularly those that are freshwater and are situated in middle and high latitudes. Based on one-year evaporation and high-frequency meteorological?water quality data of Lake Wuliangsuh... ver más
Revista: Water

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace