Inicio  /  Applied Sciences  /  Vol: 10 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

Unsupervised Detection of Changes in Usage-Phases of a Mobile App

Hoyeol Chae    
Ryangkyung Kang and Ho-Sik Seok    

Resumen

Under the fierce competition and budget constraints, most mobile apps are launched without sufficient tests. Thus, there exists a great demand for automated app testing. Recent developments in various machine learning techniques have made automated app testing a promising alternative to manual testing. This work proposes novel approaches for one of the core functionalities of automated app testing: the detection of changes in usage-phases of a mobile app. Because of the flexibility of app development languages and the lack of standards, each mobile app is very different from other apps. Furthermore, the graphical user interfaces for similar functionalities are rarely consistent or similar. Thus, we propose methods detecting usage-phase changes through object recognition and metrics utilizing graphs and generative models. Contrary to the existing change detection methods requiring learning models, the proposed methods eliminate the burden of training models. This elimination of training is suitable for mobile app testing whose typical usage-phase is composed of less than 10 screenshots. Our experimental results on commercial mobile apps show promising improvement over the state-of-the-practice method based on SIFT (scale-invariant feature transform).

 Artículos similares

       
 
Hellena Hempe, Alexander Bigalke and Mattias Paul Heinrich    
Background: Degenerative spinal pathologies are highly prevalent among the elderly population. Timely diagnosis of osteoporotic fractures and other degenerative deformities enables proactive measures to mitigate the risk of severe back pain and disabilit... ver más
Revista: Information

 
Tala Talaei Khoei and Naima Kaabouch    
Intrusion Detection Systems are expected to detect and prevent malicious activities in a network, such as a smart grid. However, they are the main systems targeted by cyber-attacks. A number of approaches have been proposed to classify and detect these a... ver más
Revista: Information

 
Abrar Alamr and Abdelmonim Artoli    
Anomaly detection is one of the basic issues in data processing that addresses different problems in healthcare sensory data. Technology has made it easier to collect large and highly variant time series data; however, complex predictive analysis models ... ver más
Revista: Algorithms

 
Jian Huang and Yijun Gu    
Community detection is an important task in the analysis of complex networks, which is significant for mining and analyzing the organization and function of networks. As an unsupervised learning algorithm based on the particle competition mechanism, stoc... ver más
Revista: Applied Sciences

 
Dawei Luo, Heng Zhou, Joonsoo Bae and Bom Yun    
Reliability and robustness are fundamental requisites for the successful integration of deep-learning models into real-world applications. Deployed models must exhibit an awareness of their limitations, necessitating the ability to discern out-of-distrib... ver más
Revista: Applied Sciences