Inicio  /  Computers  /  Vol: 9 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks?A Case Study on Genome Gap-Filling

Luca Cappelletti    
Tommaso Fontana    
Guido Walter Di Donato    
Lorenzo Di Tucci    
Elena Casiraghi and Giorgio Valentini    

Resumen

Missing data imputation has been a hot topic in the past decade, and many state-of-the-art works have been presented to propose novel, interesting solutions that have been applied in a variety of fields. In the past decade, the successful results achieved by deep learning techniques have opened the way to their application for solving difficult problems where human skill is not able to provide a reliable solution. Not surprisingly, some deep learners, mainly exploiting encoder-decoder architectures, have also been designed and applied to the task of missing data imputation. However, most of the proposed imputation techniques have not been designed to tackle ?complex data?, that is high dimensional data belonging to datasets with huge cardinality and describing complex problems. Precisely, they often need critical parameters to be manually set or exploit complex architecture and/or training phases that make their computational load impracticable. In this paper, after clustering the state-of-the-art imputation techniques into three broad categories, we briefly review the most representative methods and then describe our data imputation proposals, which exploit deep learning techniques specifically designed to handle complex data. Comparative tests on genome sequences show that our deep learning imputers outperform the state-of-the-art KNN-imputation method when filling gaps in human genome sequences.

 Artículos similares

       
 
Masoud Jafari Shalamzari, Wanchang Zhang, Atefeh Gholami and Zhijie Zhang    
Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is tim... ver más
Revista: Water

 
Olga Kurasova, Arnoldas Bud?ys and Viktor Medvedev    
As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of informatio... ver más
Revista: Informatics

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Zhen Liu, Qifeng Yang, Anlue Wang and Xingyu Gu    
In the process of driving in an underground interchange, drivers are faced with many challenges, such as being in a closed space, visual changes alternating between light and dark conditions, complex road conditions in the confluence section, and dense s... ver más
Revista: Infrastructures

 
Mohammad Alhumaid and Ayman G. Fayoumi    
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t... ver más
Revista: Applied Sciences