ARTÍCULO
TITULO

Robust Classification Method for Underwater Targets Using the Chaotic Features of the Flow Field

Xinghua Lin    
Jianguo Wu and Qing Qin    

Resumen

Fish can sense their surrounding environment by their lateral line system (LLS). In order to understand the extent to which information can be derived via LLS and to improve the adaptive ability of autonomous underwater vehicles (AUVs), a novel strategy is presented, which directly uses the information of the flow field to distinguish the object obstacle. The flow fields around different targets are obtained by the numerical method, and the pressure signal on the virtual lateral line is studied based on the chaos theory and fast Fourier transform (FFT). The compounded parametric features, including the chaotic features (CF) and the power spectrum density (PSD), which is named CF-PSD, are used to recognize the kinds of obstacles. During the research of CF, the largest Lyapunov exponent (LLE), saturated correlation dimension (SCD), and Kolmogorov entropy (KE) are taken into account, and PSD features include the number, amplitude, and position of wave crests. A two-step support vector machine (SVM) is built and used to classify the shapes and incidence angles based on the CF-PSD. It is demonstrated that the flow fields around triangular and square targets are chaotic systems, and the new findings indicate that the object obstacle can be recognized directly based on the information of the flow field, and the consideration of a parametric feature extraction method (CF-PSD) results in considerably higher classification success.

 Artículos similares

       
 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences

 
Chenhong Yan, Shefeng Yan, Tianyi Yao, Yang Yu, Guang Pan, Lu Liu, Mou Wang and Jisheng Bai    
Ship-radiated noise classification is critical in ocean acoustics. Recently, the feature extraction method combined with time?frequency spectrograms and convolutional neural networks (CNNs) has effectively described the differences between various underw... ver más

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Marco Guerrieri, Giuseppe Parla, Masoud Khanmohamadi and Larysa Neduzha    
Asphalt pavements are subject to regular inspection and maintenance activities over time. Many techniques have been suggested to evaluate pavement surface conditions, but most of these are either labour-intensive tasks or require costly instruments. This... ver más
Revista: Infrastructures

 
Thomas Kopalidis, Vassilios Solachidis, Nicholas Vretos and Petros Daras    
Recent technological developments have enabled computers to identify and categorize facial expressions to determine a person?s emotional state in an image or a video. This process, called ?Facial Expression Recognition (FER)?, has become one of the most ... ver más
Revista: Information