Inicio  /  Future Internet  /  Vol: 12 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

The Value of Simple Heuristics for Virtualized Network Function Placement

Zahra Jahedi and Thomas Kunz    

Resumen

Network Function Virtualization (NFV) can lower the CAPEX and/or OPEX for service providers and allow for quick deployment of services. Along with the advantages come some challenges. The main challenge in the use of Virtualized Network Functions (VNF) is the VNFs? placement in the network. There is a wide range of mathematical models proposed to place the Network Functions (NF) optimally. However, the critical problem of mathematical models is that they are NP-hard, and consequently not applicable to larger networks. In wireless networks, we are considering the scarcity of Bandwidth (BW) as another constraint that is due to the presence of interference. While there exist many efforts in designing a heuristic model that can provide solutions in a timely manner, the primary focus with such heuristics was almost always whether they provide results almost as good as optimal solution. Consequently, the heuristics themselves become quite non-trivial, and solving the placement problem for larger networks still takes a significant amount of time. In this paper, in contrast, we focus on designing a simple and scalable heuristic. We propose four heuristics, which are gradually becoming more complex. We compare their performance with each other, a related heuristic proposed in the literature, and a mathematical optimization model. Our results demonstrate that while more complex placement heuristics do not improve the performance of the algorithm in terms of the number of accepted placement requests, they take longer to solve and therefore are not applicable to larger networks.In contrast, a very simple heuristic can find near-optimal solutions much faster than the other more complicated heuristics while keeping the number of accepted requests close to the results achieved with an NP-hard optimization model.

 Artículos similares

       
 
Paolo Bellavista and Giuseppe Di Modica    
A Digital Twin (DT) refers to a virtual representation or digital replica of a physical object, system, process, or entity. This concept involves creating a detailed, real-time digital counterpart that mimics the behavior, characteristics, and attributes... ver más
Revista: Future Internet

 
Yan Chen and Chunchun Hu    
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time... ver más

 
Sean Grimes and David E. Breen    
Wisdom-of-Crowds-Bots (WoC-Bots) are simple, modular agents working together in a multi-agent environment to collectively make binary predictions. The agents represent a knowledge-diverse crowd, with each agent trained on a subset of available informatio... ver más
Revista: Future Internet

 
Xin Chen, Longgang Xiang, Fengwei Jiao and Huayi Wu    
OpenStreetMap (OSM) road networks provide public digital maps underlying many spatial applications such as routing engines and navigation services. However, turning relationships and time restrictions at OSM intersections are lacking in these maps, posin... ver más

 
Agnes W. Brokerhof, Renate van Leijen and Berry Gersonius    
This paper describes the development and trial of a method (Quick Flood Risk Scan method) to determine the vulnerable value of monuments for flood risk assessment. It was developed in the context of the European Flood Directive for the Dutch Flood Risk M... ver más
Revista: Water