Inicio  /  Applied Sciences  /  Vol: 14 Par: 7 (2024)  /  Artículo
ARTÍCULO
TITULO

An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data

Jiarui Xia and Yongshou Dai    

Resumen

Ground roll noise suppression is a crucial step in processing deep pre-stack seismic data. Recently, supervised deep learning methods have gained popularity in this field due to their ability to adaptively learn and extract powerful features. However, these methods rely on a large amount of clean seismic records without ground roll noise as reference labels. Unfortunately, generating high-quality and realistic clean seismic records for training remains a challenge. To tackle this problem, an unsupervised learning method called WPI-SD (wavelet prior information for deep learning in seismic data) is proposed for ground roll noise suppression in deep pre-stack seismic data. This approach takes into account the distinct temporal, lateral, and frequency characteristics that differentiate ground roll noise from real reflected waves in deep pre-stack seismic records. By designing a ground roll suppression loss function, the deep learning network can learn the specific distribution characteristics of real reflected waves within seismic records containing ground roll noise, even without labeled data. This enables the extraction of effective reflection signals and subsequent suppression of ground roll noise. Applied to actual seismic data processing, this method effectively mitigates ground roll noise while preserving valuable reflection signals, proving its practical significance.

 Artículos similares

       
 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences