Inicio  /  Applied System Innovation  /  Vol: 6 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Adaptive Learning in Agent-Based Models: An Approach for Analyzing Human Behavior in Pandemic Crowding

David Romero and Paula Escudero    

Resumen

This study assesses the impact of incorporating an adaptive learning mechanism into an agent-based model simulating behavior on a university campus during a pandemic outbreak, with the particular case of the COVID-19 pandemic. Our model not only captures individual behavior, but also serves as a powerful tool for assessing the efficacy of geolocalized policies in addressing campus overcrowding and infections. The main objective is to demonstrate RL?s effectiveness in representing agent behavior and optimizing control policies through adaptive decision-making in response to evolving pandemic dynamics. By implementing RL, we identify different temporal patterns of overcrowding violations, shedding light on the complexity of human behavior within semi-enclosed environments. While we successfully reduce campus overcrowding, the study recognizes its limited impact on altering the pandemic?s course, underlining the importance of comprehensive epidemic control strategies. Our research contributes to the understanding of adaptive learning in complex systems and provides insights for shaping future public health policies in similar community settings. It emphasizes the significance of considering individual decision-making influenced by adaptive learning, implementing targeted interventions, and the role of geospatial elements in pandemic control. Future research directions include exploring various parameter settings and updating representations of the disease?s natural history to enhance the applicability of these findings. This study offers valuable insights into managing pandemics in community settings and highlights the need for multifaceted control strategies.

 Artículos similares

       
 
Sheng Zhang, Guangzhong Liu and Chen Cheng    
Over the past few decades, unmanned surface vehicles (USV) have drawn a lot of attention. But because of the wind, waves, currents, and other sporadic disturbances, it is challenging to understand and collect correct data about USV dynamics. In this pape... ver más

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Mattia Chiappini, Carla Dei, Ettore Micheletti, Emilia Biffi and Fabio Alexander Storm    
In recent years, the number of applications of virtual reality (VR) for the Autism spectrum disorder (ASD) population has increased and has become one of the most suitable tools to address the psychological needs of these individuals. The present scoping... ver más
Revista: Applied Sciences

 
Gokhan Gungor and Mehdi Afshari    
In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the des... ver más
Revista: Applied Sciences