Resumen
Growing evidence has demonstrated the influence of internal nitrogen (N) and phosphorus (P) on harmful algae blooms in eutrophic freshwater ecosystems. However, the main controlling factors for internal N and P release risks, and whether these factors vary as environmental conditions change, remains poorly understood. We evaluated potential release risks of N and P from sediments in two freshwater reservoirs in Beihai City, southern China, by evaluating apparent nutrient fluxes during simulated static incubation experiments at two temperatures (15 °C and 25 °C). Sediments were analyzed to determine their basic properties as well as N and P fractions. Results showed that the main controlling factors of the apparent fluxes in dissolved total P, soluble reactive P, total N, and ammonium were related to sediment adsorption properties, redox properties, and microbial-mediated properties (e.g., water-extractable P, total inorganic N, redox-sensitive P, total organic carbon, organic P). The primary controlling factors for apparent N and P fluxes were dependent on the form of N and P and changed with temperature. The results suggest that care should be taken when simply using total N and P contents in sediments to evaluate their internal nutrient release risks.