Inicio  /  Clean Technologies  /  Vol: 4 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Application of Machine Learning to Accelerate Gas Condensate Reservoir Simulation

Anna Samnioti    
Vassiliki Anastasiadou and Vassilis Gaganis    

Resumen

According to the roadmap toward clean energy, natural gas has been pronounced as the perfect transition fuel. Unlike usual dry gas reservoirs, gas condensates yield liquid which remains trapped in reservoir pores due to high capillarity, leading to the loss of an economically valuable product. To compensate, the gas produced on the surface is stripped from its heavy components and reinjected back to the reservoir as dry gas thus causing revaporization of the trapped condensate. To optimize this gas recycling process compositional reservoir simulation is utilized, which, however, takes very long to complete due to the complexity of the governing differential equations implicated. The calculations determining the prevailing k-values at every grid block and at each time step account for a great part of total CPU time. In this work machine learning (ML) is employed to accelerate thermodynamic calculations by providing the prevailing k-values in a tiny fraction of the time required by conventional methods. Regression tools such as artificial neural networks (ANNs) are trained against k-values that have been obtained beforehand by running sample simulations on small domains. Subsequently, the trained regression tools are embedded in the simulators acting thus as proxy models. The prediction error achieved is shown to be negligible for the needs of a real-world gas condensate reservoir simulation. The CPU time gain is at least one order of magnitude, thus rendering the proposed approach as yet another successful step toward the implementation of ML in the clean energy field.

 Artículos similares

       
 
Mazen A. Al-Sinan, Abdulaziz A. Bubshait and Zainab Aljaroudi    
Recent advancements in machine learning (ML) applications have set the stage for the development of autonomous construction project scheduling systems. This study presents a blueprint to demonstrate how construction project schedules can be generated aut... ver más
Revista: Buildings

 
Beata Baziak, Marek Bodziony and Robert Szczepanek    
Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimat... ver más
Revista: Hydrology

 
Wei He and Mingze Chen    
The advancement of cutting-edge technologies significantly transforms urban lifestyles and is indispensable in sustainable urban design and planning. This systematic review focuses on the critical role of innovative technologies and digitalization, parti... ver más
Revista: Buildings

 
Guy Austern, Tanya Bloch and Yael Abulafia    
The application of machine learning (ML) for the automatic classification of building elements is a powerful technique for ensuring information integrity in building information models (BIMs). Previous work has demonstrated the favorable performance of s... ver más
Revista: Buildings

 
Tianyu Xi, Ming Wang, Enjia Cao, Jin Li, Yong Wang and Salanke Umar Sa?ad    
The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation m... ver más
Revista: Buildings