Inicio  /  Applied Sciences  /  Vol: 10 Par: 11 (2020)  /  Artículo
ARTÍCULO
TITULO

Model Predictive Control of Non-Linear Systems Using Tensor Flow-Based Models

Rómulo Antão    
José Antunes    
Alexandre Mota and Rui Escadas Martins    

Resumen

The present paper proposes an approach for the development of a non-linear model-based predictive controller (NMPC) using a non-linear process model based on Artificial Neural Networks (ANNs). This work exploits recent trends on ANN literature using a TensorFlow implementation and shows how they can be efficiently used as support for closed-loop control systems. Furthermore, it evaluates how the generalization capability problems of neural networks can be efficiently overcome when the model that supports the control algorithm is used outside of its initial training conditions. The process?s transient response performance and steady-state error are parameters under focus and will be evaluated using a MATLAB?s Simulink implementation of a Coupled Tank Liquid Level controller and a Yeast Fermentation Reaction Temperature controller, two well-known benchmark systems for non-linear control problems.

 Artículos similares

       
 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Yongyong Zhao, Jinghua Wang, Guohua Cao and Xu Yao    
This study introduces a reduced-order leg dynamic model to simplify the controller design and enhance robustness. The proposed multi-loop control scheme tackles tracking control issues in legged robots, including joint angle and contact-force regulation,... ver más
Revista: Applied Sciences

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Wenhao Li, Xianxia Zhang, Yueying Wang and Songbo Xie    
Model predictive control (MPC), an extensively developed rolling optimization control method, is widely utilized in the industrial field. While some researchers have incorporated predictive control into underactuated unmanned surface vehicles (USVs), mos... ver más

 
Sofía Ramos-Pulido, Neil Hernández-Gress and Gabriela Torres-Delgado    
Current research on the career satisfaction of graduates limits educational institutions in devising methods to attain high career satisfaction. Thus, this study aims to use data science models to understand and predict career satisfaction based on infor... ver más
Revista: Informatics