Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios

Luis Morales-Marín    
Howard Wheater and Karl-Erich Lindenschmidt    

Resumen

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9?1.28 kg km - 2 - 2 year - 1 - 1 and 0.12?0.17 kg km - 2 - 2 year - 1 - 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ~36% and ~21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.

 Artículos similares

       
 
Pawel Lisowski and Michal A. Glinicki    
The wide use of multi-component cement of highly reduced Portland clinker factor is largely impeded by detrimental changes in the rheological properties of concrete mixes, a substantial reduction in the early rate of cement hardening, and sometimes the i... ver más
Revista: Applied Sciences

 
Benjamin W. Tobin, Benjamin V. Miller, Matthew L. Niemiller and Andrea M. Erhardt    
Karst aquifers are unique among groundwater systems because of variable permeability and flow-path organization changes resulting from dissolution processes. Over time, changes in flow-path connectivity complicate interpretations of conduit network evolu... ver más
Revista: Hydrology

 
Aaron A. Akin, Gia Nguyen and Aleksey Y. Sheshukov    
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes f... ver más
Revista: Water

 
Ahmed Abouelsaad, Greg White and Ali Jamshidi    
Asphalt mixtures age during service in the field, primarily as the result of chemical changes in the bituminous binder phase. The ageing phenomenon changes the properties of the asphalt mixture, including the stiffness modulus, the resistance to deformat... ver más
Revista: Infrastructures

 
Mattia Antonelli, Elena Caselli and Laura Gastaldi    
Gait smoothness assessment, particularly concerning age-related changes, could offer a valuable clinical tool. The findings indicate the potential utility of gait smoothness estimation in aiding clinicians in identifying and evaluating age-related impair... ver más
Revista: Applied Sciences