Resumen
On-line monitoring of wastewater parameters is a major scientific and technical challenge because of the great variability of wastewater characteristics and the extreme physical-chemical conditions that endure the sensors. Wastewater treatment plant managers require fast and reliable information about the input sewage and the operation of the different treatment stages. There is a great need for the development of sensors for the continuous monitoring of wastewater parameters. In this sense, several optical systems have been evaluated. This article presents an experimental laboratory-based approach to quantify commonly employed urban wastewater parameters, namely biochemical oxygen demand in five days (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), and the ratio BOD5:COD, with a visible and short wave near infrared (V/SW-NIR) spectrometer (400?1000 nm). Partial least square regression (PLSR) models were developed in order to quantify the wastewater parameters with the recorded spectra. PLSR models were developed for the full spectral range and also for the visible and near infrared spectral ranges separately. Good PLSR models were obtained with the visible spectral range for BOD5 (RER = 9.64), COD (RER = 10.88), and with the full spectral range for the TSS (RER = 9.67). The results of this study show that V/SW-NIR spectroscopy is a suitable technique for on-line monitoring of wastewater parameters.