Inicio  /  Water  /  Vol: 10 Par: 6 (2018)  /  Artículo
ARTÍCULO
TITULO

Numerical Study of Spatial Behavior of Solute Particle Transport in Single Fracture with Variable Apertures

Yong-Wook Jeong and Woochang Jeong    

Resumen

The aim of this study is to numerically analyze spatial behaviors of solute particle transport in a single fracture with spatially correlated variable apertures under application of effective normal stress conditions. The numerical results show that solute particle transport in a single fracture is strongly affected by spatial correlation length of variable apertures and applied effective normal stress. As spatial correlation length increases, mean residence time of solute particles decreases and tortuosity and Peclet number (a dimensionless number representing the relationship between the rate of advection of solute particles by the flow and the rate of diffusion of solute particles) also decreases. These results indicate that the geometry of the aperture distribution is favorable to solute particle transport when the spatial correlation length is increased. However, as effective normal stress increases, the mean residence time and tortuosity tend to increase but the Peclet number decreases. The main reason for a decreasing Peclet number is that the solute particle is transported by one or two channels with relatively higher localized flow rates owing to increase in contact areas resulting from increasing effective normal stress. Based on the numerical results of the solute particle transport produced in this study, an exponential-type correlation formula between the mean residence time and the effective normal stress is proposed.

 Artículos similares

       
 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences

 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences