Inicio  /  Geosciences  /  Vol: 9 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Morphostructural, Meteorological and Seismic Factors Controlling Landslides in Weak Rocks: The Case Studies of Castelnuovo and Ponzano (North East Abruzzo, Central Italy)

Monia Calista    
Enrico Miccadei    
Tommaso Piacentini and Nicola Sciarra    

Resumen

We investigated the role of the morphostructural setting and seismic and meteorological factors in the development of landslides in the piedmont of the Abruzzo Apennines. In February 2017, following a heavy snow precipitation event and a moderate seismic sequence (at the end of the Central Italy 2016?2017 seismic crisis), several landslides affected the NE-Abruzzo chain and piedmont area. This work is focused on the Ponzano landslide (Civitella del Tronto, Teramo) and the Castelnuovo landslide (Campli, Teramo) in the NE Abruzzo hilly piedmont. These landslides consist of: (1) a large translational slide-complex landslide, affecting the Miocene?Pliocene sandstone clay bedrock sequence of the piedmont hilly sector; and (2) a complex (topple/fall-slide) landslide, which occurred along a high and steep scarp on conglomerate rocks pertaining to terraced alluvial fan deposits of the Pleistocene superficial deposits. Both of the landslides are typical of the Abruzzo hilly piedmont and both of them largely affected houses and villages located on top of the scarp or within the slope. The landslides were studied by means of field geological and geomorphological mapping, borehole investigations, geostructural analysis and photogeological analysis. For the Ponzano landslide, a detail pre-post-landslide air photo interpretation allowed for defining the deformation pattern occurred on the slope. For the Castelnuovo landslide, the triggering factors and the stability of the slope were evaluated with FLAC3D numerical modelling, in pre- and post-landslide conditions. Through this integrated analysis, the triggering factors, the landslide mechanism and the stability conditions of the landslides and the characterization of two main types of landslides affecting the piedmont hilly area of the Abruzzo region were investigated.

 Artículos similares

       
 
Eva Fedato, Giandomenico Fubelli, Laurie Kurilla and Davide Tiranti    
Landslides are the most common natural hazard in the Piemonte region (northwestern Italy). This study is focused on shallow landslides caused by the sliding of the surficial detrital-colluvial cover caused by rainfall and characterized by a sudden and fa... ver más
Revista: Geosciences

 
Emilia Damiano, Martina de Cristofaro, Antonia Brunzo, Goffredo Carrieri, Luisa Iavazzo, Nadia Netti and Lucio Olivares    
Broad mountainous areas in the western Campania (southern Italy), where young pyroclastic deposits extensively outcrop, frequently experience rainfall-induced slope movements of different degrees of mobility, causing heavy damage and fatalities. Such lan... ver más
Revista: Geosciences

 
Ragil Andika Yuniawan, Ahmad Rifa?i, Fikri Faris, Andy Subiyantoro, Ratna Satyaningsih, Alidina Nurul Hidayah, Rokhmat Hidayat, Akhyar Mushthofa, Banata Wachid Ridwan, Eka Priangga, Agus Setyo Muntohar, Victor G. Jetten, Cees J. van Westen, Bastian V. den Bout and Samuel J. Sutanto    
Landslides are one of the most disastrous natural hazards that frequently occur in Indonesia. In 2017, Balai Sabo developed an Indonesia Landslide Early Warning System (ILEWS) by utilizing a single rainfall threshold for an entire nation, leading to inac... ver más
Revista: Geosciences

 
Aynaz Biniyaz, Behnam Azmoon, Ye Sun and Zhen Liu    
Subsurface drainage has been widely accepted to mitigate the hazard of landslides in areas prone to flooding. Specifically, the use of drainage wells with pumping systems has been recognized as an effective short-term solution to lower the groundwater ta... ver más
Revista: Geosciences

 
Francesco Castelli, Valentina Lentini and Alessandra Di Venti    
Fast-moving landslides (i.e., debris/earth flows) are often caused by heavy rainfall occurring in small areas, and are not predictable. On the other hand, innovative methods for geomechanical characterization, numerical analysis, and modeling are require... ver más
Revista: Geosciences