ARTÍCULO
TITULO

Deep-Neural-Network-Based Receiver Design for Downlink Non-Orthogonal Multiple-Access Underwater Acoustic Communication

Habib Hussain Zuberi    
Songzuo Liu    
Muhammad Bilal    
Ayman Alharbi    
Amar Jaffar    
Syed Agha Hussnain Mohsan    
Abdulaziz Miyajan and Mohsin Abrar Khan    

Resumen

The excavation of the ocean has led to the submersion of numerous autonomous vehicles and sensors. Hence, there is a growing need for multi-user underwater acoustic communication. On the other hand, due to the limited bandwidth of the underwater acoustic channel, downlink non-orthogonal multiple access (NOMA) is one of the fundamental pieces of technology for solving the problem of limited bandwidth, and it is expected to be beneficial for many modern wireless underwater acoustic applications. NOMA downlink underwater acoustic communication (UWA) is accomplished by broadcasting data symbols from a source station to several users, which uses superimposed coding with variable power levels to enable detection through successive interference cancellation (SIC) receivers. Nevertheless, comprehensive information of the channel condition and channel state information (CSI) are both essential for SIC receivers, but they can be difficult to obtain, particularly in an underwater environment. To address this critical issue, this research proposes downlink underwater acoustic communication using a deep neural network utilizing a 1D convolution neural network (CNN). Two cases are considered for the proposed system in the first case: in the first case, two users with different power levels and distances from the transmitter employ BPSK and QPSK modulations to support multi-user communication, while, in the second case, three users employ BPSK modulation. Users far from the base station receive the most power. The base station uses superimposed coding. The BELLHOP ray-tracing algorithm is utilized to generate the training dataset with user depth and range modifications. For training the model, a composite signal passes through the samples of the UWA channel and is fed to the model along with labels. The DNN receiver learns the characteristic of the UWA channel and does not depend on CSI. The testing CIR is used to evaluate the trained model. The results are compared to the traditional SIC receiver. The DNN-based DL NOMA underwater acoustic receiver outperformed the SIC receiver in terms of BER in simulation results for all the modulation orders.

 Artículos similares

       
 
Peizhen Zhang, Xiaofeng Yin, Bin Wang and Ziyi Feng    
The construction of wind farm pilings, submarine pipelines, and underwater submarines involves multiple cylinders. However, there is currently a lack of economic research on predicting the mechanism and characteristics of mutual coupling of acoustic scat... ver más

 
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Jing Li, Jin Fu and Nan Zou    
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for r... ver más

 
Jessica J. Sportelli, Kelly M. Heimann and Brittany L. Jones    
Bottlenose dolphins (Tursiops truncatus) rely on frequency- and amplitude-modulated whistles to communicate, and noise exposure can inhibit the success of acoustic communication through masking or causing behavioral changes in the animal. At the US Navy ... ver más