ARTÍCULO
TITULO

Ships? Small Target Detection Based on the CBAM-YOLOX Algorithm

Yuchao Wang    
Jingdong Li    
Zeming Chen and Chenglong Wang    

Resumen

In order to solve the problem of low accuracy of small target detection in traditional target detection algorithms, the YOLOX algorithm combined with Convolutional Block Attention Module (CBAM) is proposed. The algorithm first uses CBAM on the shallow feature map to better focus on small target information, and the Focal loss function is used to regress the confidence of the target to overcome the positive and negative sample imbalance problem of the one-stage target detection algorithm. Finally, the Soft Non-Maximum Suppression (SNMS) algorithm is used for post-processing to solve the problem of missed detection in close range ship target detection. The experimental results show that the average accuracy of the proposed CBAM-YOLOX network target detection is improved by 4.01% and the recall rate is improved by 8.81% compared with the traditional YOLOX network, which verifies the effectiveness of the proposed algorithm.

 Artículos similares

       
 
Antonello Pasini and Stefano Amendola    
Neural network models are often used to analyse non-linear systems; here, in cases of small datasets, we review our complementary approach to deep learning with the purpose of highlighting the importance and roles (linear, non-linear or threshold) of cer... ver más
Revista: Applied Sciences

 
Zhendong He, Wenbin Yang, Yanjie Liu, Anping Zheng, Jie Liu, Taishan Lou and Jie Zhang    
Ensuring the safety of transmission lines necessitates effective insulator defect detection. Traditional methods often need more efficiency and accuracy, particularly for tiny defects. This paper proposes an innovative insulator defect recognition method... ver más
Revista: Information

 
Meng Bi, Xianyun Yu, Zhida Jin and Jian Xu    
In this paper, we propose an Iterative Greedy-Universal Adversarial Perturbations (IGUAP) approach based on an iterative greedy algorithm to create universal adversarial perturbations for acoustic prints. A thorough, objective account of the IG-UAP metho... ver más
Revista: Applied Sciences

 
Hao Gu, Ming Chen and Dongmei Gan    
The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male an... ver más
Revista: Applied Sciences

 
Jiao Su, Yi An, Jialin Wu and Kai Zhang    
Pedestrian detection has always been a difficult and hot spot in computer vision research. At the same time, pedestrian detection technology plays an important role in many applications, such as intelligent transportation and security monitoring. In comp... ver más
Revista: Algorithms