ARTÍCULO
TITULO

Study on Bearing Capacity of Reinforced Composite Pipe Pile Group in Reclaimed Stratum under Vertical Load

Xiaohua Bao    
Zilong Cheng    
Jun Shen    
Xiaodong Zhang    
Xiangsheng Chen and Hongzhi Cui    

Resumen

A new stiffened composite pipe pile was developed for improving the foundation of reclaimed ground in ocean engineering. To study the bearing capacity of the stiffened composite pipe pile group, a combination of field test and finite element method was used. Firstly, field tests were performed on the proposed single stiffened composite pipe pile. The single stiffened composite pipe pile model was verified by comparing the numerical simulation results with the field test results. The load transfer mechanism from the stiffened core to the cemented soil and the surrounding soil was clarified. Further, a 3D finite element model of the stiffened composite pipe pile group was established based on the single stiffened composite pipe pile model. Finally, the bearing capacity of the pile group and the stress distribution of each pile were analysed and the influence of the pile spacing on the pile bearing capacity was discussed. The results showed that the axial stress of both the side and corner piles decreased rapidly with an increase in the pile spacing, and the stress-bearing ratio decreased. The stress-bearing ratio of the central pile increases with an increase in pile spacing. The smaller the pile spacing, the larger the load proportion of the composite pile group and the larger the foundation settlement. The optimal design scheme was a composite pile with a 500 mm stiffened core diameter, 700 mm outer cemented soil diameter, and a spacing between piles of four times the cemented soil diameter (2.8 m) considering the group pile bearing capacity and the economic benefits of the project. These results provide a reference for the design and construction of stiffened composite piles for ground improvement projects.

 Artículos similares

       
 
Yifeng Yang, Jingshuai Luan, Jing Nie, Xin Zhang, Jiong Du, Gang Zhao, Lei Dong, Yong Fan, He Cui and Yubo Li    
In the past, due to improper sludge treatment technology and the absence of treatment standards, some municipal sludge was simply dewatered and then sent to landfills, occupying a significant amount of land and posing a serious threat of secondary pollut... ver más
Revista: Water

 
Zhen Xu, Lianjiang Xu, Junfeng Sun, Meihong Liu, Taohong Liao and Xiangping Hu    
Flexible support cylindrical gas film seals (CGFSs) adapt well to rotor whirling and have a good gas lubrication effect during thermal deformation. However, when a CGFS operates under the ?three high? (high interface slip speed, high-pressure differentia... ver más
Revista: Aerospace

 
Sixu Liu, Jianfei Xu, Nan Zhou, Yuzhe Zhang, Chaowei Dong and Zhuo Lv    
The mining of coal resources is accompanied by a large amount of solid waste such as gangue, which seriously affects the ecological environment. The gangue grouting backfilling technique can achieve the dual goals of gangue disposal and surface deformati... ver más
Revista: Applied Sciences

 
Saima Bhatti, Asif Ali Shaikh, Asif Mansoor and Murtaza Hussain    
Machinery components undergo wear and tear over time due to regular usage, necessitating the establishment of a robust prognosis framework to enhance machinery health and avert catastrophic failures. This study focuses on the collection and analysis of v... ver más
Revista: Applied Sciences

 
Weiyuan Zhu, Jiaqi Cheng, Yutao Pang, Hongbin An, Junpeng Zou, Jie Ren and Cheng Zhang    
This study proposes a new form of underground diaphragm wall foundation with hexagonal sections, called the grid pile foundation (GPF), which is used for long-span bridges. To investigate the lateral bearing capacity characteristics of the integrated pil... ver más
Revista: Applied Sciences