Inicio  /  Applied Sciences  /  Vol: 13 Par: 16 (2023)  /  Artículo
ARTÍCULO
TITULO

Spacecraft Attitude Stabilization Control with Fault-Tolerant Capability via a Mixed Learning Algorithm

Jihe Wang    
Qingxian Jia and Dan Yu    

Resumen

The issue of active attitude fault-tolerant stabilization control for spacecrafts subject to actuator faults, inertia uncertainty, and external disturbances is investigated in this paper. To robustly and accurately reconstruct actuator faults, a novel mixed learning observer (MLO) is explored by combining the iterative learning algorithm and the repetitive learning algorithm. Moreover, to guarantee robust spacecraft attitude fault-tolerant stabilization, by synthesizing the mixed learning algorithm with the sliding mode controller, a novel mixed learning sliding-mode controller (MLSMC) is designed based on the separation principle, in which the mixed learning algorithm is used to update composite disturbances online, including fault errors, inertia uncertainty, and external disturbances. Finally, a numerical example is provided to demonstrate the effectiveness and superiority of our proposed spacecraft attitude fault-tolerant stabilization control approach.

 Artículos similares

       
 
Olli Jansson and Matthew W. Harris    
This paper presents new techniques for the trajectory design and control of nonlinear dynamical systems. The technique uses a convex polytope to bound the range of the nonlinear function and associates with each vertex an auxiliary linear system. Provide... ver más
Revista: Aerospace

 
Ting Song, Zixuan Zheng, Yufei Guo and Jianping Yuan    
A model-free control method is applied to the attitude and orbital operation of the post-capture combined spacecraft, which consists of a space robot and debris. The main contribution of this paper lies in the following three aspects. Firstly, the discre... ver más
Revista: Aerospace

 
Ting Jin, Guohua Kang, Jian Cai, Shaoxia Jia, Jinghua Yang, Xinghua Zhang, Zhenhua Zhang, Long Li and Fangfang Liu    
The low-frequency disturbances transmitted by flexible cables are difficult to be attenuated for a novel disturbance-free payload spacecraft, which decreases the payload?s pointing accuracy and stability. In this research, a new spacecraft configuration ... ver más
Revista: Aerospace

 
Tengfei Zhang and Rongjun Mu    
To deal with the attitude tracking control problem of a struck or pierced geocentric polar displaced solar sail (GPDSS), an attitude adaptive control strategy is proposed in this paper under the complex conditions of unknown inertial parameters, external... ver más
Revista: Aerospace

 
Ahmed Mahfouz, Gabriella Gaias, D. M. K. K. Venkateswara Rao and Holger Voos    
In this paper, the problem of autonomous optimal absolute orbit keeping for a satellite mission in Low Earth Orbit using electric propulsion is considered. The main peculiarity of the approach is to support small satellite missions in which the platform ... ver más
Revista: Aerospace