Inicio  /  Agriculture  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for ?Zingiberaceae? Crop

Hamna Waheed    
Noureen Zafar    
Waseem Akram    
Awais Manzoor    
Abdullah Gani and Saif ul Islam    

Resumen

Plants? diseases cannot be avoided because of unpredictable climate patterns and environmental changes. The plants like ginger get affected by various pests, conditions, and nutritional deficiencies. Therefore, it is essential to identify such causes early and perform the cure to get the desired production rate. Deep learning-based methods are helpful for the identification and classification of problems in this domain. This paper presents deep artificial neural network and deep learning-based methods for the early detection of diseases, pest patterns, and nutritional deficiencies. We have used a real-field dataset consisting of healthy and affected ginger plant leaves. The results show that the convolutional neural network (CNN) has achieved the highest accuracy of 99%" role="presentation">99%99% 99 % for disease rhizomes detection. For pest pattern leaves, VGG-16 models showed the highest accuracy of 96%" role="presentation">96%96% 96 % . For nutritional deficiency-affected leaves, ANN has achieved the highest accuracy (96%" role="presentation">96%96% 96 % ). The experimental results achieved are comparable with other existing techniques in the literature. In addition, the results demonstrated the potential in improving the yield of ginger using the proposed disease detection methods and an essential consideration for the design of real-time disease detection applications. However, the results are specific to the dataset used in this work and may yield different results for the other datasets.

 Artículos similares

       
 
Guoqing Feng, Cheng Wang, Aichen Wang, Yuanyuan Gao, Yanan Zhou, Shuo Huang and Bin Luo    
Crop lodging is an important cause of direct economic losses and secondary disease transmission in agricultural production. Most existing methods for segmenting wheat lodging areas use a large-volume network, which poses great difficulties for annotation... ver más
Revista: Agriculture

 
Hui Liu, Kun Li, Luyao Ma and Zhijun Meng    
Headland boundary identification and ranging are the key supporting technologies for the automatic driving of intelligent agricultural machinery, and they are also the basis for controlling operational behaviors such as autonomous turning and machine lif... ver más
Revista: Agriculture

 
Jerry Gao, Charanjit Kaur Bambrah, Nidhi Parihar, Sharvaree Kshirsagar, Sruthi Mallarapu, Hailong Yu, Jane Wu and Yunyun Yang    
With the development of artificial intelligence, the intelligence of agriculture has become a trend. Intelligent monitoring of agricultural activities is an important part of it. However, due to difficulties in achieving a balance between quality and cos... ver más
Revista: Agriculture

 
Wenhao Wang, Yun Shi, Wanfu Liu and Zijin Che    
Rising labor costs and a workforce shortage have impeded the development and economic benefits of the global grape industry. Research and development of intelligent grape harvesting technologies is desperately needed. Therefore, rapid and accurate identi... ver más
Revista: Agriculture

 
Lexin Zhang, Kuiheng Chen, Liping Zheng, Xuwei Liao, Feiyu Lu, Yilun Li, Yuzhuo Cui, Yaze Wu, Yihong Song and Shuo Yan    
This study introduces a novel high-accuracy fruit fly detection model based on the Transformer structure, specifically aimed at addressing the unique challenges in fruit fly detection such as identification of small targets and accurate localization agai... ver más
Revista: Agriculture