Resumen
The T26 tunnel was designed within the scope of the Ankara-Istanbul high-speed railway in accordance with the speed of 250 km/h. Some serious problems and excessive deformations were encountered during the excavation works. The deformations in the tunnel caused subsidence on the surface and the Tunnel Boring Machine (TBM) became stuck; therefore, tunnel excavation works were suspended. Design works for re-excavation in the T26 tunnel and extracting of the TBM were carried out and the tunnel was re-designed by the New Austrian Tunneling Method (NATM) system. The main purposes of the present study are to describe the problems encountered during the T26 tunnel and to discuss the sources of the problems. The advantages and disadvantages of TBM and NATM methods for the tunnel having difficult ground conditions were discussed. Critical points needing to be considered for the tunnels excavated with TBM through weak ground conditions and the effect of the TBM selection process were discussed. Considering the complex geological and geotechnical structure of the tunnel route, it is possible to say that the T26 case is an interesting case for tunnel engineering. Along the tunnel route, landslides, high seismic activity, groundwater conditions, and extremely weak rock mass features coexist. Therefore, the tunnel route is a very complex environment. However, due to the geometric limitations of the high-speed railways, relocation of the route is not possible. The experiences gained from tunnel excavations under difficult conditions are capable of bringing new horizons to future tunneling studies.