Resumen
Meteorological technology has evolved rapidly in recent years to provide enormous, accurate and personalized advantages in the public service. Large volumes of observational data are generated gradually by technologies such as geographical remote sensing, meteorological radar satellite, etc. that makes data analysis in weather forecasting more precise but also poses a threat to the traditional method of data storage. In this paper, we present MHBase, (Meteorological data based on HBase (Hadoop Database), a distributed real-time query scheme for meteorological data based on HBase. The calibrated data obtained from terminal devices will be partitioned into HBase and persisted to HDFS (the Hadoop Distributed File System). We propose two algorithms (the Indexed Store and the Indexed Retrieve Algorithms) to implement a secondary index using HBase Coprocessors, which allow MHbase to provide high performance data querying on columns other than rowkey. Experimental results show that the performance of MHBase can satisfy the basic demands of meteorological business services.