Resumen
This study evaluates the performance of commercial reverse osmosis (RO) and nanofiltration (NF) membranes for the removal of metal ions from synthetic water and surface water carried from the north-west of Lake Tanganyika in the city of Uvira, in the east of the Democratic Republic of Congo. Metal ion analyses were performed by the standardized ICP-MS and ICP-OES methods. The RO membrane showed higher metal ion rejection in high-concentration solutions (synthetic samples) prepared in the laboratory as well as in low-concentration samples from real raw water collected near Lake Tanganyika. Rejection levels were higher than 98% for Cr3+, Pb2+, Cd2+, As3+, Ni2+, and Sb+3 ions in the synthetic solutions, and 99.2, 98.8, 98.6, 99.2, 98.4, and 98.8%, respectively, in the real samples. The concentrations of metals in the permeate varied depending on the feed concentration and were 0.15 to 1.02 mg/L, 0.33 to 22 mg/L, and 0.11 to 22 mg/L in RO, NF90, and NF270 membranes, respectively. Regarding the NF membranes, the rejection of Cr, Ni, and Cd ions was interesting: 98.2, 97.8, and 92.3%, respectively. However, it was lower for Pb, As, and Sb ions: 76.9, 52.5 and 64.1%, respectively. The flux of NF was 329 to 375 L/m2.h, much higher than for RO membranes, which had a flux of 98 to 132 L/m2.h. The studied membranes are thus a feasible solution to remove the studied metals from real water sources at low concentrations since they meet the standards of the World Health Organization on specific values assigned to chemicals from industrial sources and human habitation areas where these ions are present in drinking water.