Resumen
The North China Plain (NCP) is facing a water crisis under the dual impact of natural and anthropogenic factors. Groundwater levels have declined continuously since 1960, causing a series of environmental problems that have restricted sustainable development in the region. In the present study, we first utilized a previously developed 3D groundwater model to determine changes in groundwater level in the region over the past 50 years (1961?2010). We then applied grey relational analysis (GRA) to identify and ordinate major factors that have contributed to these changes. The results show an overall decreasing trend in groundwater levels in this region over the past 50 years and an increase in the water table depth at a rate of approximately 0.36 m/a. Groundwater exploitation showed the most significant correlation with the groundwater table decline, when compared with other factors including precipitation and river leakage. Therefore, human activities should be considered the primary force driving the groundwater level down. The results of this study have implications for developing criteria that consider changes in both climate and socio-economics. Furthermore, since the NCP is one of the most water-scarce and densely populated regions in the world, the analytical approach used in and the insights gained from this study are of international interest.