ARTÍCULO
TITULO

A New Approach to Refining Land Use Types: Predicting Point-of-Interest Categories Using Weibo Check-in Data

Xucai Zhang    
Yeran Sun    
Anyao Zheng and Yu Wang    

Resumen

The information of land use plays an important role in urban planning and optimizing the allocation of resources. However, traditional land use classification is imprecise. For instance, the type of commercial land is highly filled with the categories of shopping, eating, etc. The number of mixed-use lands is increasingly growing nowadays, and these lands sometimes are too mixed to be well investigated by conventional approaches such as remote sensing technology. To address this issue, we used a new social sensing approach to classify land use according to human mobility and activity patterns. Previous studies used other social sensing approaches to predict land use types at the parcel or the area level, whilst fine-grained point-of-interest (POI)-level land use data are likely to more useful in urban planning. To abridge this research gap, we proposed a new social sensing approach dedicated to classifying land use at a finer scale (i.e., POI-level or building level) according to human mobility and activity patterns reflected by location-based social network (LBSN) data. Specifically, we firstly investigated spatial and temporal patterns of human mobility and activity behavior using check-in data from a popular Chinese LBSN named Sina Weibo and subsequently applied those patterns to predicting the category of POI to refine urban land use classification in Guangzhou, China. In this study, we applied three classification methods (i.e., naive Bayes, support vector machines, and random forest) to recognize category of a certain POI by spatial and temporal features of human mobility and activity behavior as well as POIs? locational characteristics. Random forest outperformed the other two methods and obtained an overall accuracy of 72.21%. Apart from that, we compared the results of the different rules in filtering check-in samples. The comparison results show that a reasonable rule to select samples is essential for predicting the category of POI. Moreover, the approach proposed in this study can be potentially applied to identifying functions of buildings according to visitors? mobility and activity behavior and buildings? locational characteristics.

Palabras claves

 Artículos similares

       
 
Dilanka Chandrasiri, Perampalam Gatheeshgar, Hadi Monsef Ahmadi and Lenganji Simwanda    
In the construction domain, there is a growing emphasis on sustainability, resource efficiency, and energy optimisation. Light-gauge steel panels (LGSPs) stand out for their inherent advantages including lightweight construction and energy efficiency. Ho... ver más
Revista: Buildings

 
Guangxi Sun, Gang Zhang, Jianrong Huang, Qiaoli Shi, Xiaocheng Tang and Salamat Ullah    
In the present paper, a modified Fourier series approach is developed for new precise flexural analysis of three different types of concrete plates in a rectangular sewage tank. The bending problems of the bottom plate, side-plate, and the fluid-guiding ... ver más
Revista: Buildings

 
Mauro Femminella and Gianluca Reali    
The need for adaptivity and scalability in telecommunication systems has led to the introduction of a software-based approach to networking, in which network functions are virtualized and implemented in software modules, based on network function virtual... ver más
Revista: Future Internet

 
Dario Bottino-Leone, Dagmar Elisabet Exner, Jennifer Adami, Alexandra Troi and Jessica Balest    
The abandonment and deterioration of historic rural buildings in Europe raise significant issues, including hydrogeological risks, the loss of productive land, and cultural heritage decline. Despite being underestimated, these structures hold significant... ver más
Revista: Buildings

 
Anika Stelzl and Daniela Fuchs-Hanusch    
Austria?s water utilities are facing new challenges due to advancing climate change. In recent years, changes in water demand have been observed. Water demand forecast models are required to assess these changes and react to them in a sustainable way. In... ver más
Revista: Water