Inicio  /  Future Internet  /  Vol: 14 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Modelling and Analysis of Performance Characteristics in a 60 Ghz 802.11ad Wireless Mesh Backhaul Network for an Urban 5G Deployment

Michael Mackay    
Alessandro Raschella and Ogeen Toma    

Resumen

With the widespread deployment of 5G gaining pace, there is increasing interest in deploying this technology beyond traditional Mobile Network Operators (MNO) into private and community scenarios. These deployments leverage the flexibility of 5G itself to support private networks that sit alongside or even on top of existing public 5G. By utilizing a range of virtualisation and slicing techniques in the 5G Core (5GC) and heterogeneous Radio Access Networks (RAN) at the edge, a wide variety of use cases can be supported by 5G. However, these non-typical deployments may experience different performance characteristics as they adapt to their specific scenario. In this paper we present the results of our work to model and predict the performance of millimeter wave (mmWave) backhaul links that were deployed as part of the Liverpool 5G network. Based on the properties of the 802.11ad protocol and the physical characteristics of the environment, we simulate how each link will perform with different signal-to-noise ratio (SNR) and Packet Error Rate (PER) values and verify them against real-world deployed links. Our results show good convergence between simulated and real results and provide a solid foundation for further network planning and optimization.

 Artículos similares

       
 
Cai Wu, Yanwen Wang, Jiong Wang, Menno-Jan Kraak and Mingshu Wang    
This study introduces a machine learning-based framework for mapping street patterns in urban morphology, offering an objective, scalable approach that transcends traditional methodologies. Focusing on six diverse cities, the research employed supervised... ver más

 
Cagri Alperen Inan, Ammar Maoui, Yann Lucas and Joëlle Duplay    
Water resource management scenarios have become more crucial for arid to semi-arid regions. Their application prerequisites rigorous hydrological modelling approaches since data are usually exposed to uncertainties and inaccuracies. In this work, Soil Wa... ver más
Revista: Water

 
Lei Jiang and Ziyue Zeng    
Since the impoundment of the Three Gorges Project, the downstream hydrology and river dynamics have been modified. The Yichang?Chenglingji Reach (YCR), as a part of the mainstream of the Middle Yangtze River, has consequently been significantly scoured, ... ver más
Revista: Water

 
Elias Dimitriou, Andreas Efstratiadis, Ioanna Zotou, Anastasios Papadopoulos, Theano Iliopoulou, Georgia-Konstantina Sakki, Katerina Mazi, Evangelos Rozos, Antonios Koukouvinos, Antonis D. Koussis, Nikos Mamassis and Demetris Koutsoyiannis    
Storm Daniel initiated on 3 September 2023, over the Northeastern Aegean Sea, causing extreme rainfall levels for the following four days, reaching an average of about 360 mm over the Peneus basin, in Thessaly, Central Greece. This event led to extensive... ver más
Revista: Water

 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water