Inicio  /  Future Internet  /  Vol: 15 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Federated Learning for Intrusion Detection Systems in Internet of Vehicles: A General Taxonomy, Applications, and Future Directions

Jadil Alsamiri and Khalid Alsubhi    

Resumen

In recent years, the Internet of Vehicles (IoV) has garnered significant attention from researchers and automotive industry professionals due to its expanding range of applications and services aimed at enhancing road safety and driver/passenger comfort. However, the massive amount of data spread across this network makes securing it challenging. The IoV network generates, collects, and processes vast amounts of valuable and sensitive data that intruders can manipulate. An intrusion detection system (IDS) is the most typical method to protect such networks. An IDS monitors activity on the road to detect any sign of a security threat and generates an alert if a security anomaly is detected. Applying machine learning methods to large datasets helps detect anomalies, which can be utilized to discover potential intrusions. However, traditional centralized learning algorithms require gathering data from end devices and centralizing it for training on a single device. Vehicle makers and owners may not readily share the sensitive data necessary for training the models. Granting a single device access to enormous volumes of personal information raises significant privacy concerns, as any system-related problems could result in massive data leaks. To alleviate these problems, more secure options, such as Federated Learning (FL), must be explored. A decentralized machine learning technique, FL allows model training on client devices while maintaining user data privacy. Although FL for IDS has made significant progress, to our knowledge, there has been no comprehensive survey specifically dedicated to exploring the applications of FL for IDS in the IoV environment, similar to successful systems research in deep learning. To address this gap, we undertake a well-organized literature review on IDSs based on FL in an IoV environment. We introduce a general taxonomy to describe the FL systems to ensure a coherent structure and guide future research. Additionally, we identify the relevant state of the art in FL-based intrusion detection within the IoV domain, covering the years from FL?s inception in 2016 through 2023. Finally, we identify challenges and future research directions based on the existing literature.

 Artículos similares

       
 
Hadeel Alrubayyi, Moudy Sharaf Alshareef, Zunaira Nadeem, Ahmed M. Abdelmoniem and Mona Jaber    
The hype of the Internet of Things as an enabler for intelligent applications and related promise for ushering accessibility, efficiency, and quality of service is met with hindering security and data privacy concerns. It follows that such IoT systems, w... ver más
Revista: Future Internet

 
Aristeidis Karras, Anastasios Giannaros, Christos Karras, Leonidas Theodorakopoulos, Constantinos S. Mammassis, George A. Krimpas and Spyros Sioutas    
In the context of the Internet of Things (IoT), Tiny Machine Learning (TinyML) and Big Data, enhanced by Edge Artificial Intelligence, are essential for effectively managing the extensive data produced by numerous connected devices. Our study introduces ... ver más
Revista: Future Internet

 
Shobhit Aggarwal and Asis Nasipuri    
The Internet of Things (IoT) enables us to gain access to a wide range of data from the physical world that can be analyzed for deriving critical state information. In this regard, machine learning (ML) is a valuable tool that can be used to develop mode... ver más
Revista: Future Internet

 
Fotis Nikolaidis, Moysis Symeonides and Demetris Trihinas    
Federated learning (FL) is a transformative approach to Machine Learning that enables the training of a shared model without transferring private data to a central location. This decentralized training paradigm has found particular applicability in edge ... ver más
Revista: Future Internet

 
Tongyang Xu, Yuan Liu, Zhaotai Ma, Yiqiang Huang and Peng Liu    
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogen... ver más
Revista: Future Internet