Inicio  /  Applied Sciences  /  Vol: 9 Par: 21 (2019)  /  Artículo
ARTÍCULO
TITULO

Spatial Interpolation of GNSS Troposphere Wet Delay by a Newly Designed Artificial Neural Network Model

Mahmut Oguz Selbesoglu    

Resumen

Global Navigation Satellite System (GNSS) signals arrive at the Earth in a nonlinear and slightly curved way due to the refraction effect caused by the troposphere. The troposphere delay of the GNSS signal consists of hydrostatic and wet parts. In particular, tropospheric wet delay prediction and interpolation are more difficult than those of the dry component due to the rapid temporal and spatial variation of the water vapor content. Wet delay estimation and interpolation with a sufficient accuracy is an important issue for all parameters obtained by GNSS positioning techniques. In particular, in real-time positioning applications, errors caused by interpolation of the wet troposphere delay are reflected in the height component of about 1 to 2 cm. Furthermore, the amount of water vapor in the troposphere is very important information in weather forecast applications obtained as a function of wet delay. Therefore, real-time monitoring of the troposphere can be achieved with a higher resolution and accuracy by utilizing neural network models for interpolation of the wet tropospheric delay. In addition, in the absence of the GNSS station, wet delays can be interpolated by means of the surrounding stations to the desired location. In this study, a back propagation artificial neural network (BPNN) model based on meteorological parameters obtained from The New Austrian Meteorological Measuring Network (TAWES) was used to interpolate wet troposphere delay. Analysis was carried out at 40 reference stations of the Echtzeit Positionierung Austria (EPOSA) GNSS Network covering the whole of Austria. The interpolation of zenith wet delays based on the artificial neural network was performed by using latitude, longitude, altitude and meteorological parameters (temperature, pressure, weighted mean temperature, and water vapor pressure). These parameters were then subtracted from the artificial neural network model one by one and six different artificial neural networks were designed. In addition, the linear interpolation method (LIN) and inverse distance weighted interpolation method (IDW) were used as conventional interpolation methods. In order to investigate the effect of the network density on interpolation methods, three networks, including 40, 30, and 20 reference stations, were formed and the increased distance effect on interpolation methods was evaluated. In addition, analyses were conducted in winter, spring, and summer to evaluate the seasonal effects on interpolation methods. According to the statistical analysis, the root mean square error (RMSE) values of the IDW, LIN, and BPNN methods were found to be 12.6, 13.4, and 5.9 mm, respectively.

 Artículos similares

       
 
Yuyin Chen, Yongqiang Zhang, Jing Tian, Zixuan Tang, Longhao Wang and Xuening Yang    
As extreme climate events become more common with global warming, groundwater is increasingly vital for combating long-term drought and ensuring socio-economic and ecological stability. Currently, the mechanism of meteorological drought propagation to gr... ver más
Revista: Water

 
Muhammad Tayyab, Rana Ammar Aslam, Umar Farooq, Sikandar Ali, Shahbaz Nasir Khan, Mazhar Iqbal, Muhammad Imran Khan and Naeem Saddique    
Groundwater Arsenic (As) data are often sparse and location-specific, making them insufficient to represent the heterogeneity in groundwater quality status at unsampled locations. Interpolation techniques have been used to map groundwater As data at unsa... ver más
Revista: Water

 
Luís P. N. Mendes, Ana M. C. Ricardo, Alexandre J. M. Bernardino and Rui M. L. Ferreira    
We present novel velocimetry algorithms based on the hybridization of correlation-based Particle Image Velocimetry (PIV) and a combination of Lucas?Kanade and Liu?Shen optical flow (OpF) methods. An efficient Aparapi/OpenCL implementation of those method... ver más
Revista: Water

 
Konstantin Belyaev, Andrey Kuleshov and Ilya Smirnov    
The main aim of this work is to study the spatial?temporal variability of the model?s physical and spectral characteristics in the process of assimilation of observed ocean surface height data from the AVISO (Archiving, Validating and Interpolation Satel... ver más

 
Ahmad Dhuha Habibullah, Ayi Tarya, Nining Sari Ningsih and Mutiara Rachmat Putri    
Ocean temperatures increased during the 20th century and are predicted to continue to rise during the 21st century. Simultaneously, the extreme phenomena of shorter time ocean warming, known as Marine Heatwaves (MHWs), are also taking place. The present ... ver más