Inicio  /  Buildings  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation Analysis of the Full-Section Immersed Tube with the Post-Pouring Belt under Hydration Reaction

Ping-Jie Li    
Ming-Jie Chen and Wen-Huo Sun    

Resumen

To study the force and deformation characteristics of a full-section immersed tube with post-pouring belt under the action of hydration reaction, the numerical model of full-section immersed tube with post-pouring belt was established by using MIDAS FEA (V2013) finite element analysis software, and the stress, cracking and deformation of the segment of the post-pouring belt were analyzed. The results show that under the action of hydration reaction, the concrete reaches the highest temperature at about 36 h, which appears at the roof of the tube gallery in the immersed tube, and the bottom steel plate expands rapidly initially, and subsequently shrinks gradually. The outer surface of the post-pouring segment concrete is stretched, and the internal region is under pressure, and as the internal temperature of the concrete cools down, the bottom plate starts to contract. The steel bar connection between the post-pouring belt and the surrounding immersed tube segment will increase the risk of cracking in the bottom plate of the full-section immersed tube. When only the steel bars in the bottom plate are connected, the maximum tensile stress of the immersed tube bottom plate will increase by 16.0% compared to the no connection case. If the steel bars of the immersed tube?s web and roof are also connected, the maximum tensile stress will increase by over 20%. By connecting the steel bars, the peripheral tube section plays a certain role in limiting the transverse deformation of the post-pouring belt and constraining the reinforcement of the bottom plate and web (and roof) can reduce the transverse deformation of the immersed tube to a great extent, reducing the proportion by over 10%.

 Artículos similares

       
 
Valentina Pintos Andreoli, Hikari Shimadera, Hiroto Yasuga, Yutaro Koga, Motoharu Suzuki and Akira Kondo    
This study developed a coupled atmospheric?marine model using the COAWST model system for the Harima Nada area between spring 2010 and winter 2011 to evaluate the seasonal influence of the Kako River?s discharge in the sea. The Kako River is one of the l... ver más
Revista: Water

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water

 
Jinduo Yang, Xi?an Li, Weiping Wang, Hao Chai, Mingxiao An and Qianyi Dai    
The process of dust transportation is widespread, leading to the formation of regions such as the Loess Plateau. In order to understand the mechanisms of dust particle transportation, this study conducted wind tunnel experiments to simulate natural wind-... ver más
Revista: Water

 
Jiayu Huang, Feng Diao, Shifeng Ding, Sen Han, Pentti Kujala and Li Zhou    
In previous studies of ship?ice interactions, most studies focused on ship?level ice interactions, overlooking potential rafted ice conditions in extreme ice conditions. The purpose of this study is to develop a numerical model for predicting ship resist... ver más
Revista: Water

 
Chang Li, Shuren Hao, Shengjie Zhang, Yongqing Jiang and Zhidong Yi    
In order to understand the long-term process of CO2 storage and demonstrate its safety, multi-field coupled numerical simulation is considered a crucial technology in the field of geological CO2 storage. This study establishes a site-specific homogeneous... ver más
Revista: Water