ARTÍCULO
TITULO

Conceptual Design and Numerical Analysis of a Novel Floating Desalination Plant Powered by Marine Renewable Energy for Egypt

Islam Amin    
Mohamed E.A. Ali    
Seif Bayoumi    
Selda Oterkus    
Hosam Shawky and Erkan Oterkus    

Resumen

The supply of freshwater has become a worldwide interest, due to serious water shortages in many countries. Due to rapid increases in the population, poor water management, and limitations of freshwater resources, Egypt is currently below the water scarcity limit. Since Egypt has approximately 3000 km of coastlines on both the Red Sea and the Mediterranean Sea, seawater desalination powered by marine renewable energy could be a sustainable alternative solution, especially for remote coastal cities which are located far from the national water grid. The objective of this research work is to evaluate the feasibility of a floating desalination plant (FDP) concept powered by marine renewable energy for Egypt. A novel design of the FDP concept is developed as an innovative solution to overcome the freshwater shortage of remote coastal cities in Egypt. A mobile floating platform supported by reverse osmosis (RO) membrane powered by marine renewable power technology is proposed. Based on the abundant solar irradiation and sufficient wind density, Ras Ghareb was selected to be the base site location for the proposed FDP concept. According to the collected data from the selected location, a hybrid solar?wind system was designed to power the FDP concept under a maximum power load condition. A numerical tool, the DNV-GL Sesam software package, was used for static stability, hydrodynamic performance, and dynamic response evaluation. Moreover, WAVE software was used to design and simulate the operation of the RO desalination system and calculate the power consumption for the proposed FDP concept. The results show that the proposed mobile FDP concept is highly suitable for being implemented in remote coastal areas in Egypt, without the need for infrastructure or connection to the national grid for both water and power.

 Artículos similares

       
 
Angelos Filippatos, Dionysios Markatos, Georgios Tzortzinis, Kaushik Abhyankar, Sonia Malefaki, Maik Gude and Spiros Pantelakis    
The current prevailing trend in design across key sectors prioritizes eco-design, emphasizing considerations of environmental aspects in the design process. The present work aims to take a significant leap forward by proposing a design process where sust... ver más
Revista: Aerospace

 
Ulrich Carsten Johannes Rischmüller, Alexandros Lessis, Patrick Egerer and Mirko Hornung    
A wide range of aircraft propulsion technologies is being investigated in current research to reduce the environmental impact of commercial aviation. As the implementation of purely hydrogen-powered aircraft may encounter various challenges on the airpor... ver más
Revista: Aerospace

 
Jakub Hospodka, Jindrich Sadil, Helena Bínová, Kekula Franti?ek, Hyk? Oldrich, Hyk?ová Magdalena and Neubergová Kristýna    
We present a comprehensive methodology for a two-step approach to address the task at hand. The first step involves the optimal placement of charging stations, while the second step focuses on determining the necessary capacity of the charging stations b... ver más
Revista: Infrastructures

 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace

 
Domenik Radeck, Felix He-Mao Hsu, Florian Janke, Gabriele Semino, Tim Hofmann, Sebastian Rink and Agnes Jocher    
The hyperloop concept envisions a low pressure tube and capsules, called pods, traveling at the speed of commercial aircraft as a sustainable, future-proof mass transportation system between cities. However, in contrast to the use case of such a system, ... ver más