Resumen
We assess the effectiveness of complementary geophysical techniques to characterize a Jurassic dolomite confined aquifer at Loma de Ubeda, Spain. This aquifer, which is penetrated by wells in the 100?600-m depth range, is confined by Triassic clays (bottom) and Miocene marls (top). The Jurassic dolomite is characterized by prominent seismic reflectors of high amplitude. Thus, it is readily differentiated from the low-amplitude reflectors of the confining clay-rich Triassic and Miocene materials. Electrical resistivity tomography (ERT) allowed us to detail the characteristics of the aquifer up to a maximum depth of 220 m. Lateral changes in facies and small faults have been identified using ERT. Time-domain electromagnetic (TDEM) is an excellent complement to the two above-mentioned techniques in order to widen the analyzed depth range. We acquire TDEM data with different configurations at multiple study sites while simultaneously varying measurement parameters. In doing so and by comparing the effectiveness of these different configurations, we expand the use of TDEM for aquifer characterization.