Inicio  /  Water  /  Vol: 10 Par: 3 (2018)  /  Artículo
ARTÍCULO
TITULO

Water Temperature, pH, and Road Salt Impacts on the Fluvial Erosion of Cohesive Streambanks

Siavash Hoomehr    
Akinrotimi I. Akinola    
Theresa Wynn-Thompson    
Waverly Garnand and Matthew J. Eick    

Resumen

Increasing human populations and global climate change will severely stress our water resources. One potential unforeseen consequence of these stressors is accelerated stream channel erosion due to increased stream temperatures and changes in stream chemistry, which affect the surface potential and hence the stability of soil colloids. The objectives of this study were to determine the effect of water temperature, pH, and salinity on streambank erosion rates; determine how erosion rates vary with clay mineralogy; and, explore the relationship between zeta potential and erosion rate. Remolded samples of natural montmorillonite- and vermiculite-dominated soils were eroded in a recirculating hydraulic flume under multiple shear stresses (0.1?20 Pa) with different combinations of water temperature (10, 20, and 30 °C), pH (6 and 8), and deicing salt (0 and 5000 mg/L). The results show that erosion rates significantly increased with increasing water temperature: a 10 °C increase in water temperature increased median erosion rates by as much as a factor of eight. Significant interactions between water pH and salinity also affected erosion rates. In freshwater, erosion rates were inversely related to pH; however, at high salt concentrations, the influence of pH on erosion rates was reduced. Results of this study clearly indicate water chemistry plays a critical role in the fluvial erosion of cohesive streambanks and suggest that channel protection efforts should include controls for stream temperature, in addition to peak flow rates, to maintain channel stability.

 Artículos similares

       
 
Linfeng Wang, Shengbo Chen, Lei Chen, Zibo Wang, Bin Liu and Yucheng Xu    
Accurately mapping urban built-up areas is critical for monitoring urbanization and development. Previous studies have shown that Night light (NTL) data is effective in characterizing the extent of human activity. But its inherently low spatial resolutio... ver más

 
Sanjeeb Kumar Mohanty, Nirmal Kumar Pandit, Pawan Kumar Sah, Niraj Mahaseth, Rajesh Yadav, Dipti Ranjan Biswal, Benu Gopal Mohapatra, Brundaban Beriha, Ramachandra Pradhan and Sujit Kumar Pradhan    
The management of unutilized fly ash poses challenges due to concerns about storage and its potential groundwater contamination. Within the road industry, where the bulk utilization of fly ash is feasible, its unsuitability for use in the base and sub-ba... ver más
Revista: Infrastructures

 
Harri Koivusalo, Maria Dubovik, Laura Wendling, Eero Assmuth, Nora Sillanpää and Teemu Kokkonen    
Nature-based solutions and similar natural water retention measures to manage urban runoff are often implemented by cities in order to reduce runoff peaks, catch pollutants, and improve sustainability. However, the performance of these stormwater managem... ver más
Revista: Water

 
Suresh Sharma and Rajesh Bhatt    
In this study, the surface water salinity of Mentor Marsh, located in Northern Ohio, USA, was monitored for 3 years by establishing 10 monitoring stations, whereas sporadic surface water salinity data were recorded at more than 30 locations in the marsh ... ver más
Revista: Water

 
Charles Lan, Alec Wild, Ryan Paulik, Liam Wotherspoon and Conrad Zorn    
This study investigates the direct and indirect impacts of extreme sea level (ESL) flooding on critical infrastructure. While methods to quantify the direct impacts of ESL flooding on coastal areas are well established, the indirect impacts that extend b... ver más