Inicio  /  Hydrology  /  Vol: 3 Par: 4 (2016)  /  Artículo
ARTÍCULO
TITULO

Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry

Phoebe Hänsel    
Marcus Schindewolf    
Anette Eltner    
Andreas Kaiser and Jürgen Schmidt    

Resumen

The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM) photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm), terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs) for the pre- and post-event (resolution 1 × 1 mm). By multi-temporal change detection, the digital elevation model of difference (DoD) and an averaged soil loss (in mm) is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP) approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.

 Artículos similares

       
 
Davide Luciano De Luca and Luciano Galasso    
In this work, the authors investigated the feasibility of calibrating a model which is suitable for the generation of continuous high-resolution rainfall series, by using only data from annual maximum rainfall (AMR) series, which are usually longer than ... ver más
Revista: Hydrology

 
Gottfried Mandlburger and Boris Jutzi    
Single photon sensitive airborne Light Detection And Ranging (LiDAR) enables a higher area performance at the price of an increased outlier rate and a lower ranging accuracy compared to conventional Multi-Photon LiDAR. Single Photon LiDAR, in particular,... ver más

 
Duy Ba Nguyen and Wolfgang Wagner    
Rice farming is one of the most important activities in the agriculture sector, producing staple food for the majority of the world's growing population. Accurate and up-to-date assessment of the spatial distribution of rice cultivated area is a key info... ver más
Revista: Water

 
Phoebe Hänsel, Marcus Schindewolf, Anette Eltner, Andreas Kaiser and Jürgen Schmidt    
Revista: Hydrology