Inicio  /  Applied Sciences  /  Vol: 9 Par: 21 (2019)  /  Artículo
ARTÍCULO
TITULO

Helping the Visually Impaired See via Image Multi-labeling Based on SqueezeNet CNN

Haikel Alhichri    
Yakoub Bazi    
Naif Alajlan and Bilel Bin Jdira    

Resumen

This work presents a deep learning method for scene description. (1) Background: This method is part of a larger system, called BlindSys, that assists the visually impaired in an indoor environment. The method detects the presence of certain objects, regardless of their position in the scene. This problem is also known as image multi-labeling. (2) Methods: Our proposed deep learning solution is based on a light-weight pre-trained CNN called SqueezeNet. We improved the SqueezeNet architecture by resetting the last convolutional layer to free weights, replacing its activation function from a rectified linear unit (ReLU) to a LeakyReLU, and adding a BatchNormalization layer thereafter. We also replaced the activation functions at the output layer from softmax to linear functions. These adjustments make up the main contributions in this work. (3) Results: The proposed solution is tested on four image multi-labeling datasets representing different indoor environments. It has achieved results better than state-of-the-art solutions both in terms of accuracy and processing time. (4) Conclusions: The proposed deep CNN is an effective solution for predicting the presence of objects in a scene and can be successfully used as a module within BlindSys.

 Artículos similares

       
 
Jiarui Xia and Yongshou Dai    
Ground roll noise suppression is a crucial step in processing deep pre-stack seismic data. Recently, supervised deep learning methods have gained popularity in this field due to their ability to adaptively learn and extract powerful features. However, th... ver más
Revista: Applied Sciences

 
Sakorn Mekruksavanich and Anuchit Jitpattanakul    
Smartphones have become ubiquitous, allowing people to perform various tasks anytime and anywhere. As technology continues to advance, smartphones can now sense and connect to networks, providing context-awareness for different applications. Many individ... ver más
Revista: Information

 
Jinghua Groppe, Sven Groppe, Daniel Senf and Ralf Möller    
Given a set of software programs, each being labeled either as vulnerable or benign, deep learning technology can be used to automatically build a software vulnerability detector. A challenge in this context is that there are countless equivalent ways to... ver más
Revista: Information

 
Thomas Kopalidis, Vassilios Solachidis, Nicholas Vretos and Petros Daras    
Recent technological developments have enabled computers to identify and categorize facial expressions to determine a person?s emotional state in an image or a video. This process, called ?Facial Expression Recognition (FER)?, has become one of the most ... ver más
Revista: Information

 
Camino Eck, Xiaoyu Kröner and Dorte Janussen    
This study investigates taxonomic characteristics of carnivorous sponges from the Southern Ocean. The specimens were collected in 2010 from deep-sea hydrothermal vents of the East Scotia Ridge during the RRS James Cook Cruise JC42. All the investigated s... ver más