Resumen
Climate change is a threat to mining and other industries, especially those involving water supply and management, by inducing or amplifying some climatic parameters such as changes in precipitation regimes and temperature extremes. Using the latest NASA NEX-GDDP-CMIP6 datasets, this study quantifies the level of climate change that may affect the development of two mine sites (site 1 and site 2) in north?east Kazakhstan. The study analyses the daily precipitation and maximum and minimum temperature a of a number of global circulation models (GCM) over three future time periods, the 2040s, 2060s, and 2080s, under two shared socioeconomic pathway (SSP) scenarios, SSP245 and SSP585, against the baseline period 1981?2014. The analyses reveal that: (1) both maximum and minimum temperature will increase under both SSP in those time periods, with the rate of change for minimum temperature being higher than maximum temperature. Minimum temperature, for example, will increase by 2.2 and 2.7 °C under SSP245 and SSP585, respectively, over the 2040s period at both sites; (2) the mean annual precipitation will increase by an average rate of 7% and 10.5% in the 2040s for SSP245 and 17.5% and 7.5% for SSP585 in the 2080s at site 1 and site 2, respectively. It is also observed that summer months will experience drier condition whilst all other months will increase in precipitation; (3) the values of 24 h precipitation with a 10 year return period will also increase under both SSP scenarios and future time periods for most of the studied GCM and at both mine sites. For instance, over the near future period, a 6.9% and 2.8% increase in 10 year 24 h precipitation is expected to happen over site 1 and site 2, respectively, under SSP245. These predicted changes should be considered as design criteria adjustments for projected water supply and water management structures.