ARTÍCULO
TITULO

Hybrid approach using counterpropagation neural network for power-system network reduction

Lo    
K L    
Peng    
L J    
Macqueen    
J F    
Ekwue    
A O    
Cheng    
D T Y    

Resumen

No disponible

 Artículos similares

       
 
Mingxin Zou, Yanqing Zhou, Xinhua Jiang, Julin Gao, Xiaofang Yu and Xuelei Ma    
Field manual labor behavior recognition is an important task that applies deep learning algorithms to industrial equipment for capturing and analyzing people?s behavior during field labor. In this study, we propose a field manual labor behavior recogniti... ver más
Revista: Applied Sciences

 
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura    
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ... ver más
Revista: Applied Sciences

 
Tao Tang, Yuting Cui, Rui Feng and Deliang Xiang    
With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in exi... ver más
Revista: Information

 
Aravind Kolli, Qi Wei and Stephen A. Ramsey    
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne... ver más
Revista: Computation

 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences