ARTÍCULO
TITULO

Models for Prediction of Basal Area Mean Diameter and Number of Trees for Forest Stands in South-eastern Norway

Eid    
Tron    

Resumen

No disponible

 Artículos similares

       
 
Wangyang Li, Youzhen Xiang, Xiaochi Liu, Zijun Tang, Xin Wang, Xiangyang Huang, Hongzhao Shi, Mingjie Chen, Yujie Duan, Liaoyuan Ma, Shiyun Wang, Yifang Zhao, Zhijun Li and Fucang Zhang    
Applying hyperspectral remote sensing technology to the prediction of soil moisture content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for advancing the development of modern precision agriculture. This investig... ver más
Revista: Agronomy

 
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang    
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri... ver más
Revista: Agriculture

 
Mykhailo Lohachov, Ryoji Korei, Kazuo Oki, Koshi Yoshida, Issaku Azechi, Salem Ibrahim Salem and Nobuyuki Utsumi    
This article investigates approaches for broccoli harvest time prediction through the application of various machine learning models. This study?s experiment is conducted on a commercial farm in Ecuador, and it integrates in situ weather and broccoli gro... ver más
Revista: Agronomy

 
Jiaqiang Wang, Caiyun Yin, Weiyang Liu, Wenhao Xia and Songrui Ning    
Soil salinity affects nutrient uptake by cotton. The cotton bud stage is a very important period in the process of cotton planting and directly affects the yield of cotton. The nutritional status of the bud stage directly affects the reflectance spectra ... ver más
Revista: Agronomy

 
Luana Centorame, Thomas Gasperini, Alessio Ilari, Andrea Del Gatto and Ester Foppa Pedretti    
Machine learning is a widespread technology that plays a crucial role in digitalisation and aims to explore rules and patterns in large datasets to autonomously solve non-linear problems, taking advantage of multiple source data. Due to its versatility, ... ver más
Revista: Agronomy