|
|
|
Yahui Hu, Jiaqi Yan, Ertai Cao, Yimeng Yu, Haiming Tian and Heyuan Huang
The statistical analysis of civil aircraft accidents reveals that the highest incidence of mishaps occurs during the approach and landing stages. Predominantly, these accidents are marked by abnormal energy states, leading to critical situations like sta...
ver más
|
|
|
|
|
|
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds...
ver más
|
|
|
|
|
|
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner...
ver más
|
|
|
|
|
|
Abdul Rahaman Wahab Sait and Ali Mohammad Alorsan Bani Awad
Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease that may result in myocardial infarction. Annually, it leads to millions of fatalities and causes billions of dollars in global economic losses. Limited resources and comp...
ver más
|
|
|
|
|
|
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ...
ver más
|
|
|