|
|
|
Zifeng Zhao, Xuesong Yang, Ding Ding, Qiangyong Wang, Feiran Zhang, Zhicheng Hu, Kaikai Xu and Xuelin Wang
Physics-informed DeepONet (PI_DeepONet) is utilized for the reconstruction task of structural displacement based on measured strain. For beam and plate structures, the PI_DeepONet is built by regularizing the strain?displacement relation and boundary con...
ver más
|
|
|
|
|
|
Marco Scutari
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl?s causality, and determ...
ver más
|
|
|
|
|
|
Danilo Pau, Andrea Pisani and Antonio Candelieri
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ...
ver más
|
|
|
|
|
|
Freddy Richard Apaza, Víctoriano Fernández Vázquez, Santiago Expósito Paje, Federico Gulisano, Valerio Gagliardi, Leticia Saiz Rodríguez and Juan Gallego Medina
In the last decade, various asphalt paving materials have undergone investigation for sound attenuation purposes. This research aims to delve into the innovative design of sustainable road pavements by examining sound absorption in rubber-modified asphal...
ver más
|
|
|
|
|
|
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro...
ver más
|
|
|