|
|
|
Sunny Kumar Poguluri and Yoon Hyeok Bae
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not underg...
ver más
|
|
|
|
|
|
Hu Cai, Jiafu Wan and Baotong Chen
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ...
ver más
|
|
|
|
|
|
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac...
ver más
|
|
|
|
|
|
Fan Lin, Dengjie Chen, Cheng Liu and Jincheng He
This study pioneered a non-destructive testing approach to evaluating the physicochemical properties of golden passion fruit by developing a platform to analyze the fruit?s electrical characteristics. By using dielectric properties, the method accurately...
ver más
|
|
|
|
|
|
Barbara Cardone, Valeria D?Ambrosio, Ferdinando Di Martino and Vittorio Miraglia
One of the issues of greatest interest in urban planning today concerns the evaluation of the most vulnerable urban areas in the presence of different types of climate hazards. In this research, a hierarchical fuzzy MCDA model is implemented on a GIS-bas...
ver más
|
|
|